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ON THE ASYMPTOTIC BEHAVIOR OF THE SOLUTIONS OF BOUNDARY /778
PROBLEMS FOR QUASILINEAR DIFFERENTTIAL EQUATIONS

MeI.Vishik and L.A.lyusterniks

The construction of asymptotic solutions, involving the small
parameter €, of boundary problems for nonlinear and quasilinear
differential equations is demonstrated on the example of ordi-
nary differential equations in a direction transverse to the
boundary. Under assumption of the existence of a bounded
M-domain (which is defined) a theorem of asymptotic representa-
tion, valid for the solution Je (x) of the ordinary differential
equation lying in M, is proved by successive expansions in

The method of construction of asymptotic solutions, involving the small
parameter €, of boundary problems for linear differential equations (Ref.l, 2)
is also applicable to certain classes of nonlinear differential equations. We
shall illustrate this on the example of the ordinary differential equations

Ly=cy" +o(x, )y —¢(x, ) =0, y(0)=A4, y(l)=B8. (1)

The asymptotic solution of this problem in powers of the parameter A has
been studied by Wasow (Ref.3). Consider the boundary equation

Lw=9(x, w)w —¢(x, w)=0. (2)

Let some domain D be covered by the bounding curves w = w(x) [i.e., by so-
lutions of eq.(2)]. Then, in the domain D, the values w’(x) = ¥(x, y)/o(x, y) =
= p(x, ¥) (7 = w(x)) and ' (x) = p * pip = alx, y) are functions of (x, y).

Consider the case when, in the domain D,
?(x, ¥) >v>0, (3)

which, for the solutions (l), ensures the appearance of a boundary layer in the
neighborhhod of x = 0, Let us apply the term "secant curve from above! (or
"from below™) for the solutions ye (x) of eq.(l) to the curve y = u(x) such that
for Fe(x) < u(x) (Fe(x) = u(x)) the line y = Je(x) cannot make contact within
the zone 0 < x < 1 with y = u(x). For this it is sufficient that
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Lu=ea 4o )W —p w]<0 (>0)

for 0 < x < 1. [For example, a secant from above will be the segment y = const
on which ¥ > 0, or the bounding curve y = w(x) on which q < 0.]

Let there exist in the zone 0 < x < 1 a domain satisfying the following
conditions (let us call this the M~domain): 1) The domain is covered by a field
of bounding curves y = w(x), joining the points of the straight lines x = O,

x = 13 2) the domain is bounded by the segments [Ao, A1] and [Bo, Bi] of the
straight lines x = 0 and x = 1 and by the curves ri and rg secant from above and
from below; 3) the segment [Bo, Bil of the straight line x = 1 contains a seg-
ment [Bo, Bi] such that every bounding curve y = w(x) originating in the point
(1, Bl, Bo < B < By will pass entirely within this M-domain if 0 < x < 1, _Tt

is easy to convince oneself that the problem (1) at As < A < A;, Bo < B < By,
for sufficiently small € > 0, has a solution y = Je(x) passing within the M-
domain.

Unless otherwise specifically noted, we will assume below that the M-domain
exists, and that for the initial values A and B the above inequalities are
satisfied, and that eq.(3) is also satisfied. We note that every solution of
ed.(1) lying in the M—domain is bounded: |Fe(x)| < C; hence it is easy to derive

|§é(x)| < Ci/e. In investigating the solution y = ye(x) it is convenient to use
the function z(x) = yé(x) - p(x, ye(x)). This satisfies the equation /779

’

2= — (X, §)z—2q(x, B), m=9+en, ()

Obviously, for sufficiently small €, we have ;= Y, > O. Thus, by solving
the Cauchy problem for eq.(4) for the initial conditions at x = 0, it can be
demonstrated that z(x) is the sum of an exponentially decreasing term of the
boundary~layer type and a term of the order €. Hence it follows (for suffi-
ciently small €) that the solution ye(x) of the problem (1) for x 2 xo, where
Xo = O(€|ln €|), falls in the e-neighborhood of the bounding curve y = w(x)
(w(l) = B). For 0 < x < x0, the difference v(x) = ye(x) - w(x) is a function of
the boundary-layer type, where v(xo) = O(e), v/ (xo) = 0(e)., For 0< x< Xo, We
have v’ (x) = 0(1/e), ev’ = 0(1). Neglecting quantities of the order of 0(1),
we can write, for the principal part vo of this difference v, the following equa-
tion:

Ws -+ @ (Ug -+ @) Up = 0 (1,(0) =A—a, a=w(0); ¢(y) =2(0, ).
This equation is easily solved in quadratures and, as can be verified, for ¢ 2
=y >0, we have vo(x) = 0(1) exp (-Yx/e), vi(x) = 0(1/e) exp (=yx/e).
Theorem. If eq.(3) is satisfied in M and if ¢(x, y) and ¥(x, y) are ac-

cordingly smooth, the following asymptotic representations will be valid for the
solutions ¥e(x) of problem (1) (where Ao < A < A1, Bo < B< B;), lying in M:

Ye (%) = wo (¥) + v, (¥) + Ry (x), R, (x) = O(elnel), (5)




n1

Bt = [0 + 3 e () ]+ [oa ) + 3 0] + Raa),
§=1 s=1
Ra(x) = 0 ("), 6)

We present the scheme of proof for eq.(é). After separation of the prin-
cipal terms wo(x) + vo(x) of the asymptotic solution, we are able to linearize
the equations determining the higher terms of this asymptotic solution. The
construction of the asymptotic (6) is analogous to the process described else-
where (Ref.l, 2) for the linear case. We stipulate that

l.g(l_h. = O(E"+l). where an = Zesws; wo(l) =y(l). ws(l) =0 at s>1. (7)

]

Expanding the functions ¢(x, Wa) and ¥(x, W

n) at
powers of € and equating in ed.{7) all terms of the s

the point (x, wo(x)) in

= - £
& power ol €, we CU

(X, W) wo— (X, w)) =0,  we(l) = B;
plx, wo) W)y, + (9, (X, w,) Wy — ¥, (x, w)jw, =D, —w,

,(0) = 0; (&)

1'

where &, is a function of Wo, Wi, eees Weml, W's eeep Wi—1+ Thus the quantities
wr are successively determined by the aid of the solution of the linear equa-
tions (8); wx, we, Wi are functions bounded on [0, 1]. To find the asymptotic
solution of the boundary layer V, = Vo * €V + ees * €n+lvn+1 we start out from
the equation

Le(vn+ @) — L (@) = O(e™H1),  (vn +wn)|,_= 4, 9)

from which, according to eq.(7), it follows that Le(vy + wn) = o(e®*t). Let us
introduce, as done before (Ref.l, 2), the variable t = x/€; in this variable

elou=u"(f) + o (et, u)u, —ep(et, u).
n
Let us expand the obtained function w, =2 ¢’ws in a series in powers /780

of x = €t; remenbering that w(0) = a, and grouping the terms by powers of €, we
obtain

Bn (%) = Bn (et) = a+ 3] ¥, (1) + O (™), (10)

where the ps(t) are polynomials in t. Substituting this expression for Wn in
eq.(9), and expanding the coefficients CP(Gt, wa) and V(et, w,) in powers of €,
we obtain successively

Uell) & 2(a -+ 09) Uo() = 0, Uyl_y= A— 10y (0) = A—a; (1)



v:(()+(p(a+vo)u;(t)+¢'y(a+vo)u"’uk(l)=‘I’,. (k=0,1,...,n41);

12
Uh(0)='—b’JA(O) at 1<k<n; Un+1(0)=0. ( )

where Yy is a function of Vo, Vi1, eees Vi—15 and also of ps(t), i.e., of func—
tions already found. In this case, we shall seek vy as functions of the
boundary-~layer type (v|m = 0), which replaces the second boundary condition. It
can be proved by induction that all functions vy (k =0, 1, .v., n + 1) are
functions of the boundary-layer type.

To evaluate Rn(x) in eq.(é) we note that, according to egs.(7) and (9) and
setting ye = ¥, y1 = ¥ ~ Ro(= ¥u + W.), we have

Ly — Ly = — Ly = O ("), (13)
l.e.,

R+ 19069 T —o(x 5 Tl — 105 5) — b (x, 5} = O (en, (14)

If 21 = ¥i - plx, ¥1), Jye obtain for zi an equation differing from eq.(4)
by the introduction of 0(¢" ") on the right~hand side. Setting 6z = z - z,, we
have

Ra=T —Th=DsRa+32  Py=py(x, 1 +ORs), 0O, (15)

Furthermore, solving eq.(l4) and the corresponding equation for z; and not-—
ing that both z(0) and z1(0) will be of the order of 1/e¢, we obtain

82 (x) = O (1 /e)exp[—y1x /el + O () Rn (8x) + O (en+1), (16)

Considering eq.(15) as an equation linear in R,, solving it under the con-
dition Rn(1) = 0, and making use of eq.(16), we obtain

Rn(x) = O (1) exp[—vix/ e} + O (e) Ra (8) + O (e7+1), )

where £ is the point at which |R.(x)| reaches its maximum. If € 2 el"k, 0 <
< k < 1, it follows from eq.(l7) that

Ra (%) = O (1) exp(—yi8=*) + O (¢7+). (18)

Let 0 <€ < €'™*, Then, integrating eq.(14) between e*™¥ and €, we obtain,
since R4(E) = O,

V® PAL) £
— R (M) + § ¢ (y)dy — ? (y) dy + S ® dx+0 (en+H)=0, (19)

TEer-h iel=h 1=k




g
where, as easy to demonstrate, & = O(1)R, + O(x)R! and I 2dx = 0(e'™*)|R,(E)
1-k
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Further, eRf(e'™®), according to egs.(15) and (16)i equals 0(e)|R, (€)] +Z——_
+ 0(1) exp [=yie ¥] + 0(¢**'). The difference of the integrals in eq.(19) re-
duces_to the integral of @(yQ over the interval (51(€l_k), §(€1-k)) of length
|Ra (e*7%)| = 0(2) exp (=vae *) + 0(e)|R,(E)]| +0(¢""?) and the interval (F.(8),

y(€)) of length |Rn(§) . We note that the integral over the second interval,
which we shall denote by P, exceeds modulo YIRn%é)I The remaining terms in
eq.(19) yield an expression of the form:

O (1) exp (— =) + 0 (614 | Ry (§) | + O (en+1). (20)

Hence, according to eq.(19) and making use of the inequality |P| = Yan(g)I,
Y > 0, we obtain

[Rn (B)] = O (en+1) 4 O (1) exp (— yye=*), (1)

Since the second t?f? of eq.(2l) is of higher order than the first, we thus ob-
tain [R.(E)| = 0(¢""*). The theorem is proved. We can similarly prove:

If in the M~domain, the conditions of the theorem being satisfied, two so-
lutions y(x) and 7(x) of the problem (1) exist, then

§() =5 (x) = 0 (exp (—1ie—4)),

where k is any fixed number between O and 1, i.e., there will always be unique-
ness and accuracy to within a quantity of an exponential order of smallness
relative to €.

Sufficient conditions of uniqueness in the M~domain will be the simul-
taneous satisfaction of the inequalities:

e>y>0, p, >0, (A—a)e,>>0. (22)

Note. The above constructions are also applicable to equations of more
general form, for instance €y’ + f(x, y, y') = O, with restrictions correspond—
ing to those indicated above. It should be mentioned that, in this case, the
boundary layer may have a weaker character of variagtion.

Notes on Quasilinear partial differential equations. As shown elsewhere
(Ref.1l, 2), for the linear case the construction of the boundary layer reduces
to the golution of an ordinary differential equation in a direction transverse
to the boundary. Constructions of the same type are also applicable to certain
classes of quasilinear elliptic partial differential equations. For instance,
for the equation €®Au -~ ¥(p, ¢, u) = O under the conditions ulp=o = £(v) (p = 0
being the equation of the boundary '), ¥ (e, 9, 0) = 0, V¢ = v® > 0, the solution
of the boundary equation (at € = 0) will be w = 0, while for the boundary layer




3%y
9p

« (0, 9, v) =0, V¢p=o = f(p), which is analogous to eq.(1). For the follow~
ing approximations, linear equations are obtained and an expansion of the type

of eq.(6) takes place. By the same method, an asymptotic representation of the
form of eq.(6) can be obtained, for instance, for the quasilinear elliptic equa-
tions Leu = h with a small parameter and higher derivatives, provided that 1) for
any value of €, however small, there also exists a unique smooth solution

ue(x, y) of the boundary problem for Leu = h which continuously (uniformly in €)
depends on h [it is easy to indicate the classes of such equations on the basis
of S«NeBernshteynts work (Ref.,)]; 2) the solution w of the boundary equation

(at € = 0) is sufficiently smooth; 3) the construction of the boundary layer re-
duces, for instance, to an ordinary differential equation of the form of eq.(l).

- §

in first approximation we obtain the ordinary equation SINC)
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